Skip to main content

CEL Expressions

expr expressions in canary checker use the Go Common Expression Language (CEL). See Language Definition

http-check-expr.yaml
apiVersion: canaries.flanksource.com/v1
kind: Canary
metadata:
name: http-check-expr
spec:
interval: 30
http:
- name: http pass response 200 status code
endpoint: https://httpbin.demo.aws.flanksource.com/status/200
test:
expr: "code in [200,201,301] and sslAge < Duration('7d')"

Values in CEL represent any of the following:

TypeDescription
int64-bit signed integers
uint64-bit unsigned integers
double64-bit IEEE floating-point numbers
boolBooleans (true or false)
stringStrings of Unicode code points
bytesByte sequences
listLists of values
mapAssociative arrays with int, uint, bool, or string keys
null_typeThe value null
message namesProtocol buffer messages
typeValues representing the types in the first column

aws

aws.arnToMap

Takes in an AWS arn and parses it and returns a map.

aws.arnToMap("arn:aws:sns:eu-west-1:123:MMS-Topic") //
// map[string]string{
// "service": string,
// "region": string,
// "account": string,
// "resource": string,
// }

aws.fromAWSMap

aws.fromAWSMap takes a list of map[string]string and merges them into a single map. The input map is expected to have the field "Name".

aws.fromAWSMap(x).hello" == "world" // `true`
// Where
// x = [
// { Name: 'hello', Value: 'world' },
// { Name: 'John', Value: 'Doe' },
// ];

base64

base64.encode

base64.encode encodes the given byte slice to a Base64 encoded string.

base64.decode("aGVsbG8=") // return b'hello'

base64.decode

base64.decode decodes the given base64 encoded string back to its original form.

base64.decode("aGVsbG8=") // return b'hello'

collections

all

The all macro tests whether a predicate holds for all elements of a list e or keys of a map e. It returns a boolean value based on the evaluation. If any predicate evaluates to false, the macro evaluates to false, ignoring any errors from other predicates

Syntax:

e.all(x, p)

// Where:
// `e` is the list or a map.
// `x` represents each element of the list.
// `p` is the condition applied to each entry.

Examples:

// Checking if all elements of a list are greater than 0:
[1, 2, 3].all(e, e > 0) // true
// Ensure that the all the map keys begin with the letter "a"
{"a": "apple", "b": "banana", "c": "coconut"}.all(k, k.startsWith("a")) // false

exists

The exists macro checks if there exists at least one element in a list that satisfies a given condition. It returns a boolean value based on the evaluation.

Syntax:

e.exists(x, p)

// Where:
// `e` is the list you're checking.
// `x` represents each element of the list.
// `p` is the condition applied to each entry.

Example:

// Checking if any element of a list is equal to 2:
[1, 2, 3].exists(e, e == 2) // true

exists_one

The exists_one macro checks if there exists exactly one element in a list that satisfies a given condition. It returns a boolean value based on the evaluation.

Syntax:

e.exists_one(x, p)

// Where:
// `e` is the list you're checking.
// `x` represents each element of the list.
// `p` is the condition applied to each entry.

Example:

[1, 2, 3].exists_one(e, e > 1) // false
[1, 2, 3].exists_one(e, e == 2) // true

filter

The filter macro creates a new list containing only the elements or entries of an existing list that satisfy the given condition.

Syntax:

e.filter(x, p)

Where:

  • e is the list you're filtering.
  • x represents each element of the list.
  • p is the predicate expression applied to each entry.

Examples:

// Filtering a list to include only numbers greater than 2:
[1, 2, 3, 4].filter(e, e > 2) // [3, 4]

fold

The fold macro is used to combine all elements of a collection, such as a list or a map, using a binary function. It's a powerful tool for aggregating or reducing data.

Syntax:

//For lists:
list.fold(e, acc, <binary_function>)
//For maps:
map.fold(k, v, acc, <binary_function>)

Where:

  • list is the list you're folding.
  • map is the map you're folding.
  • e represents each element of the list.
  • k represents each key of the map.
  • v represents each value of the map.
  • acc is the accumulator, which holds the intermediate results.
  • <binary_function> is the function applied to each entry and the accumulator.

Examples:

[1, 2, 3].fold(e, acc, acc + e) // 6
// Concatenating all values of a map:
{"a": "apple", "b": "banana"}.fold(k, v, acc, acc + v) // "applebanana"

has

The has macro tests whether a field is available. It's particularly useful for protobuf messages where fields can be absent rather than set to a default value. It's especially useful for distinguishing between a field being set to its default value and a field being unset. For instance, in a protobuf message, an unset integer field is indistinguishable from that field set to 0 without the has macro.

Syntax

has(x.y): boolean

// Where
// `x` is a message or a map and
// `y` (string) is the field you're checking for.

Example:

If you have a message person with a potential field name, you can check for its presence with:

has(person.name) // true if 'name' is present, false otherwise

in

The membership test operator checks whether an element is a member of a collection, such as a list or a map. It's worth noting that the in operator doesn't check for value membership in maps, only key membership.

Syntax:

"apple" in ["apple", "banana"] // => true
3 in [1, 2, 4] // => false

map

The map macro creates a new list by transforming a list e by taking each element x to the function given by the expression t, which can use the variable x.

Syntax:

e.map(x, t)

// Where:
// `e` is the list you're transforming.
// `x` represents each element of the list.
// `t` is the transformation function applied to each entry.
e.map(x, p, t)

// Where:
// `e` is the list you're transforming.
// `p` filter before the value is transformed
// `x` represents each element of the list.
// `t` is the transformation function applied to each entry.

Examples:

// Transforming each element of a list by multiplying it by 2:
[1, 2, 3].map(e, e * 2) // [2, 4, 6]
[(1, 2, 3)].map(x, x > 1, x + 1) // [3, 4]

size

size function determines the number of elements in a collection or the number of Unicode characters in a string.

Syntax

(string) -> int string length
(bytes) -> int bytes length
(list(A)) -> int list size
(map(A, B)) -> int map size
"apple".size() // 5
b"abc".size() // 3
["apple", "banana", "cherry"].size() //  3
{"a": 1, "b": 2}.size(); // 2

slice

Returns a new sub-list using the indexes provided.

[1, 2, 3, 4].slice(1, 3) // return [2, 3]
[(1, 2, 3, 4)].slice(2, 4) // return [3 ,4]

sets

sets.contains

Returns whether the first list argument contains all elements in the second list argument. The list may contain elements of any type and standard CEL equality is used to determine whether a value exists in both lists. If the second list is empty, the result will always return true.

sets.contains(list(T), list(T)) -> bool

Examples:

sets.contains([], []) // true
sets.contains([], [1]) // false
sets.contains([1, 2, 3, 4], [2, 3]) // true
sets.contains([1, 2.0, 3u], [1.0, 2u, 3]) // true

sets.equivalent

Returns whether the first and second list are set equivalent. Lists are set equivalent if for every item in the first list, there is an element in the second which is equal. The lists may not be of the same size as they do not guarantee the elements within them are unique, so size does not factor into the computation.

sets.equivalent(list(T), list(T)) -> bool

Examples:

sets.equivalent([], []) // true
sets.equivalent([1], [1, 1]) // true
sets.equivalent([1], [1u, 1.0]) // true
sets.equivalent([1, 2, 3], [3u, 2.0, 1]) // true

sets.intersects

Returns whether the first list has at least one element whose value is equal to an element in the second list. If either list is empty, the result will be false.

sets.intersects([1], []) // false
sets.intersects([1], [1, 2]) // true
sets.intersects(
[[1], [2, 3]],
[
[1, 2],
[2, 3.0]
]
) // true

csv

CSV

CSV converts a CSV formatted array into a two-dimensional array, where each element is a row string.

CSV(["Alice,30", "Bob,31"])[0][0] // "Alice"

crypto

crypto.SHA1|256|384|512

The crypto.SHA* functions are used to compute the SHA hash of the input data.

crypto.SHA1("hello") // "2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c"
crypto.SHA256("hello") // "2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824"

dates

timestamp

timestamp represent a point in time. It's typically used in conjunction with other functions to extract or manipulate time-related data.

// Creating a timestamp for January 1st, 2023:
timestamp("2023-01-01T00:00:00Z")
// Creating another timestamp:
timestamp("2023-07-04T12:00:00Z")

.getDate

getDate extract the date part from a timestamp. It returns a string representation of the date.

// Extracting the date from a timestamp:
"2023-01-01T12:34:56Z".getDate() // "2023-01-01"
// Getting the date from another timestamp:
"2023-07-04T00:00:00Z".getDate() // "2023-07-04"

.get[DatePart]

FunctionDescriptionExample
{date>.getDayOfMonth()A integer value representing the day of the month, with the first day being 1.1 - 31
<date>.getDayOfWeek()eturns an integer value representing the day of the week, where Sunday is 0 and Saturday is 6.0 - 6
<date>.getDayOfYear()an integer value representing the day of the year, with January 1st being day 1.1 - 366
<date>.getDayOfMonth()the full year (4 digits for 4-digit years) of the specified timestamp.
<date>.getHours()the full year (4 digits for 4-digit years) of the specified timestamp.0- 23
<date>.getMilliseconds()0 -999
<date>.getMinutes()
<date>.getMonth()0 -11
<date>.getSeconds()0 - 590 - 59
<date>.getHours()

duration

duration parses a string into a new duration. The format is an integer followed by a unit: s for seconds, m for minutes, h for hours, and d for days.

// Creating a duration of 5 hours:
duration("5h") // Represents a duration of 5 hours
duration("30m") // Represents a duration of 30 minutes

Durations can also be crated using arithmetic:

FieldDescription
time.Unix(epoch)converts a UNIX time (seconds since the UNIX epoch) into a time.Time object
time.Nanosecondconverts to a time.Duration
time.Microsecond
time.Millisecond
time.Second
time.Minute
time.Hour

time.ZoneName

time.ZoneName returns the name of the local system's time zone. It doesn't require any parameters and is useful for retrieving the time zone information.

// Retrieving the local time zone name:
time.ZoneName() // Might evaluate to "PST" if the local time zone is Pacific Standard Time

time.ZoneOffset

time.ZoneOffset returns the offset of the local system's time zone in minutes. It helps in understanding the time difference between the local time zone and UTC.

// Getting the time zone offset:
time.ZoneOffset() // Could evaluate to -480 for PST

time.Parse

time.Parse parse a given string into a time object based on a specified layout. It's handy for converting string representations of time into actual time objects.

Syntax:

time.Parse(layout, value)
  • layout is the time layout string.
  • value is the string representation of the time to be parsed.
// Parsing a time string with a specific format:
time.Parse("2006-01-02", "2023-09-26") // a time object representing September 26, 2023
// Another example with a different format:
time.Parse("02-01-2006", "26-09-2023") // the same time object as above
// Parsing a time with hour and minute information:
time.Parse("15:04 02-01-2006", "14:30 26-09-2023") // Includes time of day information

time.ParseLocal

time.ParseLocal parses a given string into a time object according to a specified layout and the local time zone. It's useful for working with local times.

time.ParseLocal(layout, value)
  • layout is the time layout string.
  • value is the string representation of the time to be parsed.

Examples:

// Parsing a local time string:
time.ParseLocal("2006-01-02 15:04", "2023-09-26 14:30") // a local time object for 14:30 on September 26, 2023
// Another example:
time.ParseLocal("02-01-2006", "26-09-2023") // a local time object for September 26, 2023
// Parsing with a different time format:
time.ParseLocal("15:04 02-01-2006", "14:30 26-09-2023") // Includes time of day information in local time zone

time.ParseInLocation

time.ParseInLocation parses a string into a time object according to a specified layout and time zone. It provides more control over the time zone compared to time.ParseLocal.

Syntax:

time.ParseInLocation(layout, location, value)
  • layout is the time layout string.
  • location is the string name of the time zone.
  • value is the string representation of the time to be parsed.

Examples:

// Parsing a time string for a specific time zone:
time.ParseInLocation("2006-01-02", "America/New_York", "2023-09-26") // a time object for EST/EDT
// Another example for a different time zone:
time.ParseInLocation("02-01-2006", "Europe/London", "26-09-2023") // a time object for GMT/BST
// Parsing with hour and minute for a specific zone:
time.ParseInLocation("15:04 02-01-2006", "Asia/Tokyo", "14:30 26-09-2023") // a time object for JST

time.Now

time.Now returns the current time. It's a straightforward way to retrieve the current date and time according to the system's local time zone.

// Getting the current time:
time.Now() // the current date and time

time.ParseDuration

time.ParseDuration parses a string into a duration. It supports various units like "s" for seconds, "m" for minutes, "h" for hours, etc.

// Parsing a duration string:
time.ParseDuration("1h30m") // a duration of 1 hour and 30 minutes
// Another example with a different format:
time.ParseDuration("15m30s") // a duration of 15 minutes and 30 seconds
// Parsing a negative duration:
time.ParseDuration("-2h45m") // a duration of -2 hours and -45 minutes

time.Since

time.Since calculates the duration that has elapsed since a given time. It is commonly used to measure the time difference between a specified time and the current moment.

// Calculating the time elapsed since a specific past time:
time.Since(time.Parse("2006-01-02", "2023-09-26")) // the duration since September 26, 2023
// Another example with a different past time:
time.Since(time.Parse("15:04 02-01-2006", "14:30 26-09-2023")) // the duration since 14:30 on September 26, 2023
// Using `time.Now` for a real-time duration:
time.Since(time.Now()) // Always evaluates to a very small duration, as it's the time since "now"

time.Until

time.Until calculates the duration remaining until a specified future time. It helps in determining the time left for an event or deadline.

// Calculating the time remaining until a specific future time:
time.Until(time.Parse("2006-01-02", "2023-10-01")) // the duration until October 1, 2023
// Another example with a different future time:
time.Until(time.Parse("15:04 02-01-2006", "16:00 30-09-2023")) // the duration until 16:00 on September 30, 2023
// Using `time.Now` for a real-time duration:
time.Until(time.Now()) // Always evaluates to zero, as it's the time until "now"

encode

urlencode

urlencode encodes the given string into a URL-encoded string.

urlencode("hello world ?") // hello+world+%3F

urldecode

urldecode decodes a URL-encoded string.

urldecode("hello+world+%3F") // 'hello world ?'

filepath

filepath.Base

filepath.Base returns the last element of path. Trailing path separators are removed before extracting the last element. If the path is empty, Base returns ".". If the path consists entirely of separators, Base returns a single separator.

filepath.Base("/home/flanksource/projects/gencel") // gencel

filepath.Clean

filepath.Clean returns the shortest path name equivalent to path by purely lexical processing. It applies the following rules iteratively until no further processing can be done:

filepath.Clean("/foo/bar/../baz") // Evaluates /foo/baz

filepath.Dir

filepath.Dir returns all but the last element of path, typically the path's directory. After dropping the final element, Dir calls Clean on the path and trailing slashes are removed. If the path is empty, Dir returns ".". If the path consists entirely of separators, Dir returns a single separator. The returned path does not end in a separator unless it is the root directory.

filepath.Dir("/home/flanksource/projects/gencel") // /home/flanksource/projects

filepath.Ext

filepath.Ext returns the file name extension used by path. The extension is the suffix beginning at the final dot in the final element of path; it is empty if there is no dot.

filepath.Ext("/opt/image.jpg") // .jpg

filepath.IsAbs

filepath.IsAbs reports whether the path is absolute.

filepath.Base("/home/flanksource/projects/gencel") // true
filepath.Base("projects/gencel") // false

filepath.Join

filepath.Join joins any number of path elements into a single path, separating them with an OS specific Separator. Empty elements are ignored. The result is Cleaned. However, if the argument list is empty or all its elements are empty, Join returns an empty string. On Windows, the result will only be a UNC path if the first non-empty element is a UNC path.

filepath.Join(["/home/flanksource", "projects", "gencel"]; // /home/flanksource/projects/gencel

filepath.Match

filepath.Match reports whether name matches the shell file name pattern.

filepath.Match("*.txt", "foo.json") // false
filepath.Match("*.txt", "foo.txt") // true

filepath.Rel

filepath.Rel returns a relative path that is lexically equivalent to targpath when joined to basepath with an intervening separator. That is, Join(basepath, Rel(basepath, targpath)) is equivalent to targpath itself. On success, the returned path will always be relative to basepath, even if basepath and targpath share no elements. An error is returned if targpath can't be made relative to basepath or if knowing the current working directory would be necessary to compute it. Rel calls Clean on the result.

filepath.Rel("/foo/bar", "/foo/bar/baz") // baz

filepath.Split

filepath.Split splits path immediately following the final Separator, separating it into a directory and file name component. If there is no Separator in path, Split returns an empty dir and file set to path. The returned values have the property that path = dir+file.

filepath.Split("/foo/bar/baz") // [/foo/bar/ baz]

JSON

.JSON

JSON parses a string into an object

'{"name": "Alice", "age": 30}'.JSON()

.JSONArray

JSONArray parses a string into an array

'[{"name": "Alice"}, {"name": "Bob"}]'.JSONArray()

.toJSON

toJSON converts an object into a JSON formatted string.

[{ name: "John" }].toJSON() // [{"name":"John"}]
{'name': 'John'}.toJSON() // {"name":"John"}
1.toJSON() // 1

.toJSONPretty

toJSONPretty converts any data type into a JSON formatted string with proper indentation.

{'name': 'aditya'}.toJSONPretty('\t')
//
// {
// "name": "aditya"
// }
// Using tab for indentation:
["Alice", 30].toJSONPretty("\t")
// An empty map with four spaces indent:
{}.toJSONPretty(" ", );

jq

jq applies a jq expression to filter or transform data.

// Filtering data with a jq expression:
jq(".name", { name: "John", age: 30 }) // "John"
// Transforming data with a jq expression:
jq("{name, age}", { name: "John", age: 30, city: "NY" }) // {"name": "John", "age": 30}
// Using a complex jq expression:
jq(".[] | select(.age > 25)", [
{ name: "John", age: 30 },
{ name: "Jane", age: 25 }
]) // [{"name": "John", "age": 30}]

kubernetes

k8s.cpuAsMillicores

k8s.cpuAsMillicores returns the millicores of a Kubernetes resource.

k8s.cpuAsMillicores("10m") // 10
k8s.cpuAsMillicores("0.5") // 500
k8s.cpuAsMillicores("1.234") // 1234

k8s.getHealth

k8s.getHealth retrieves the health status of a Kubernetes resource as a map. The map contains key-value pairs providing detailed information about the resource's health.

Examples:

// Retrieving the health information of a pod:
k8s.getHealth(pod) // a map with keys and values indicating the pod's health
// Getting the health information of a service:
k8s.getHealth(service) // a map with keys and values indicating the service's health
// Checking the health information of a deployment:
k8s.getHealth(deployment) // a map with keys and values indicating the deployment's health

k8s.getStatus

k8s.getStatus retrieves the status of a Kubernetes resource as a string. It provides detailed information about the current state of the resource.

// Retrieving the status of a pod:
k8s.getStatus(pod) // "Running" if the pod is running
// Getting the status of a service:
k8s.getStatus(service) // "Active" if the service is active
// Checking the status of a deployment:
k8s.getStatus(deployment) // "Deployed" if the deployment is successful

k8s.isHealthy

k8s.isHealthy determine if a Kubernetes resource is healthy. It returns a boolean value indicating the health status of the resource.

// Checking if a pod is healthy:
k8s.isHealthy(pod) // true if the pod is healthy
// Verifying the health of a service:
k8s.isHealthy(service) // false if the service is not healthy
// Assessing the health of a deployment:
k8s.isHealthy(deployment) // true if the deployment is healthy

k8s.memoryAsBytes

k8s.memoryAsBytes converts the memory string to bytes.

k8s.memoryAsBytes("10Ki") // 10240
k8s.memoryAsBytes("1.234gi") // 1324997410

math

math.Add

math.Add takes a list of number and returns their sum

math.Add([1, 2, 3, 4, 5]) // 15

math.Sub

math.Sub takes two numbers and returns their difference

math.Sub(5, 4) // 1

math.Mul

math.Mul takes a list of numbers and returns their product

math.Mul([1, 2, 3, 4, 5]) // 120

math.Div

math.Div takes two numbers and returns their quotient

math.Div(4, 2) // 2

math.Rem

math.Rem takes two numbers and returns their remainder

math.Rem(4, 3) // 1

math.Pow

math.Pow takes two numbers and returns their power

math.Pow(4, 2) // 16

math.Seq

math.Seq generates a sequence of numbers from the start value to the end value, incrementing by the step value.

Syntax:

math.Seq([start, end, ?step])
  • start is the starting value of the sequence.
  • end is the ending value of the sequence.
  • step is the increment value of the sequence. (optional. Defaults to 1)
math.Seq([1, 5]) // [1, 2, 3, 4, 5]
math.Seq([1, 6, 2]) // [1, 3, 5]

math.Abs

math.Abs takes a number and returns its absolute value

math.Abs(-1) // 1

math.greatest

math.greatest takes a list of numbers and returns the greatest value

math.greatest([1, 2, 3, 4, 5]) // 5

math.least

math.least takes a list of numbers and returns the least value

math.least([1, 2, 3, 4, 5]) // 1

math.Ceil

math.Ceil returns the smallest integer greater than or equal to the provided float.

math.Ceil(2.3) // 3

math.Floor

math.Floor returns the largest integer less than or equal to the provided float.

math.Floor(2.3) // 2

math.Round

math.Round returns the nearest integer to the provided float.

math.Round(2.3) // 2

random

random.ASCII

random.ASCII generates random ASCII strings of a specified length.

random.ASCII(5)

random.Alpha

random.Alpha generates random alphabetic strings of a specified length.

random.Alpha(5)

random.AlphaNum

random.AlphaNum generates random alphanumeric strings of a specified length.

random.AlphaNum(5)

random.String

random.String generates random strings of a specified length and character set.

random.String(5)
// generate 5 chars between a and d
random.String(5, ["a", "d"])

random.Item

random.Item generates a random item from a list.

random.Item(["a", "b", "c"])

random.Number

random.Number generates a random integer within a specified range.

Syntax:

random.Number(min, max)
  • min is the minimum value of the range (inclusive).
  • max is the maximum value of the range (inclusive).

Examples:

random.Number(1, 10)

random.Float

random.Float generates a random float within a specified range.

Syntax:

random.Float(min, max)
  • min is the minimum value of the range (inclusive).
  • max is the maximum value of the range (inclusive).

Examples:

random.Float(1, 10)

regexp

regexp.Find

regexp.Find find the first occurrence of a pattern within a string. It returns the matched substring or an error if the pattern is invalid.

// Finding a pattern within a string:
regexp.Find("llo", "hello") // "llo"
// Searching for digits within a string:
regexp.Find("\\d+", "abc123def") // "123"
// Pattern not found in the string:
regexp.Find("xyz", "hello") // ""

regexp.FindAll

regexp.FindAll retrieves all occurrences of a pattern within a string, up to a specified count. It returns a list of matched substrings or an error if the pattern is invalid.

regexp.FindAll(pattern, count, input)
  • pattern is the regular expression pattern to find.
  • count is the maximum number of occurrences to return.
  • input is the string to search within.

Examples:

// Finding all occurrences of a pattern:
regexp.FindAll("a.", -1, "banana") // ["ba", "na", "na"]
// Limiting the number of matches:
regexp.FindAll("\\d", 2, "12345") // ["1", "2"]
// Pattern not found:
regexp.FindAll("z", -1, "hello") // []

regexp.Match

regexp.Match checks if a string matches a given regular expression pattern. It returns a boolean value indicating the match status.

// Checking if a string matches a pattern:
regexp.Match("^h.llo", "hello") // true
// Pattern does not match the string:
regexp.Match("^b", "apple") // false
// Matching digits in a string:
regexp.Match("\\d+", "abc123") // true

regexp.QuoteMeta

regexp.QuoteMeta quotes all regular expression metacharacters inside a string. It returns the quoted string.

// Quoting metacharacters in a string:
regexp.QuoteMeta("a.b") // "a\\.b"
// String without metacharacters:
regexp.QuoteMeta("abc") // "abc"
// Quoting a complex pattern:
regexp.QuoteMeta("[a-z].*") // "\\[a\\-z\\]\\.\\*"

regexp.Replace

regexp.Replace replaces occurrences of a pattern within a string with a specified replacement string. It returns the modified string.

Syntax:

regexp.Replace(pattern, replacement, input)
  • pattern is the regular expression pattern to replace.
  • replacement is the string to replace the pattern with.
  • input is the original string.
// Replacing a pattern in a string:
regexp.Replace("a.", "x", "banana") // "bxnxna"
// Pattern not found:
regexp.Replace("z", "x", "apple") // "apple"
// Replacing digits:
regexp.Replace("\\d+", "num", "abc123") // "abcnum"

regexp.ReplaceLiteral

regexp.ReplaceLiteral replaces occurrences of a pattern within a string with a specified replacement string, without interpreting the pattern as a regular expression. It returns the modified string or an error if the pattern is invalid.

Syntax:

regexp.ReplaceLiteral(pattern, replacement, input)

Where:

  • pattern is the substring to replace.
  • replacement is the string to replace the pattern with.
  • input is the original string.

Examples:

// Replacing a substring:
regexp.ReplaceLiteral("apple", "orange", "apple pie") // "orange pie"
// Substring not found:
regexp.ReplaceLiteral("z", "x", "apple") // "apple"
// Replacing a pattern without regex interpretation:
regexp.ReplaceLiteral("a.", "x", "a.b c.d") // "x.b c.d"

regexp.Split

regexp.Split splits a string into a slice of substrings separated by a pattern. It returns the slice of strings or an error if the pattern is invalid.

regexp.Split(pattern, count, input)
  • pattern is the regular expression pattern that separates the substrings.
  • count is the maximum number of splits. Use -1 for no limit.
  • input is the string to split.
regexp.Split("a.", -1, "banana") // ["", "n", "n"]
// Limiting the number of splits:
regexp.Split("\\s", 2, "apple pie is delicious") // ["apple", "pie is delicious"]
// Pattern not found:
regexp.Split("z", -1, "hello") // ["hello"]

strings

.abbrev

abbrev on a string abbreviates the string using ellipses. This will turn the string "Now is the time for all good men" into "...s the time for..." This function works like Abbreviate(string, int), but allows you to specify a "left edge" offset. Note that this left edge is not necessarily going to be the leftmost character in the result, or the first character following the ellipses, but it will appear somewhere in the result. In no case will it return a string of length greater than maxWidth.

"string".abbrev(offset, maxWidth)
  • str - the string to check
  • offset - left edge of source string
  • maxWidth - maximum length of result string, must be at least 4

Examples:

"Now is the time for all good men".abbrev(5, 20) // "...s the time for..."
"KubernetesPod".abbrev(1, 5) // "Ku..."
"KubernetesPod".abbrev(6) // "Kub..."

.camelCase

camelCase converts a given string into camelCase format.

// Converting a string to camelCase:
"hello world".camelCase() // "HelloWorld"
// Converting a snake_case string:
"hello_world".camelCase() // "HelloWorld"
// Converting a string with spaces and special characters:
"hello beautiful world!".camelCase() // "HelloBeautifulWorld"

.charAt

Returns the character at the given position. If the position is negative, or greater than the length of the string, the function will produce an error:

"hello".charAt(4) // return 'o'
"hello".charAt(5) // return ''
"hello".charAt(-1) // error

.contains

contains check if a string contains a given substring.

"apple".contains("app") // true

.endsWith

endsWith determine if a string ends with a specified substring.

"hello".endsWith("lo") // true

.format

format Returns a new string with substitutions being performed, printf-style. The valid formatting clauses are:

  • %s substitutes a string. This can also be used on bools, lists, maps, bytes, Duration, Timestamp,int, double
    Note that the dot/period decimal separator will always be used when printing a list or map that contains a double, and that null can be passed (which results in the string "null") in addition to types.
  • %d substitutes an integer.
  • %f substitutes a double with fixed-point precision. The default precision is 6, but this can be adjusted. The strings Infinity, -Infinity, and NaN are also valid input for this clause.
  • %e substitutes a double in scientific notation. The default precision is 6, but this can be adjusted.
  • %b substitutes an integer with its equivalent binary string. Can also be used on bools.
  • %x substitutes an integer with its equivalent in hexadecimal, or if given a string or bytes, will output each character's equivalent in hexadecimal.
  • %X same as above, but with A-F capitalized.
  • %o substitutes an integer with its equivalent in octal.
"this is a string: %s\nand an integer: %d".format(["str", 42]) thsis is a string: str\nand an integer: 42

.indent

indent indents each line of a string by the specified width and prefix

"hello world".indent(4, "-") // ----hello world

.indexOf

Returns the integer index of the first occurrence of the search string. If the search string is not found the function returns -1.

The function also accepts an optional position from which to begin the substring search. If the substring is the empty string, the index where the search starts is returned (zero or custom).

    <string>.indexOf(<string>) -> <int>
<string>.indexOf(<string>, <int>) -> <int>

Examples:

"hello mellow".indexOf("") // returns 0
"hello mellow".indexOf("ello") // returns 1
"hello mellow".indexOf("jello") // returns -1
"hello mellow".indexOf("", 2) // returns 2
"hello mellow".indexOf("ello", 20) // error

.join

Returns a new string where the elements of string list are concatenated.

The function also accepts an optional separator which is placed between elements in the resulting string.

["hello", "mellow"].join() // returns 'hellomellow'
["hello", "mellow"].join(" ") // returns 'hello mellow'
[].join() // returns ''
[].join("/") // returns ''

.kebabCase

kebabCase converts a given string into kebab-case format.

// Converting a string to kebab-case:
"Hello World".kebabCase() // "hello-world"
// Converting a CamelCase string:
"HelloWorld".kebabCase() // "hello-world"
// Converting a string with spaces and special characters:
"Hello Beautiful World!".kebabCase() // "hello-beautiful-world"

.lastIndexOf

Returns the integer index of the last occurrence of the search string. If the search string is not found the function returns -1.

The function also accepts an optional position which represents the last index to be considered as the beginning of the substring match. If the substring is the empty string, the index where the search starts is returned (string length or custom).

"hello mellow".lastIndexOf("") // returns 12
"hello mellow".lastIndexOf("ello") // returns 7
"hello mellow".lastIndexOf("jello") // returns -1
"hello mellow".lastIndexOf("ello", 6) // returns 1
"hello mellow".lastIndexOf("ello", -1) // error

.lowerAscii

Returns a new string where all ASCII characters are lower-cased.

This function does not perform Unicode case-mapping for characters outside the ASCII range.

"TacoCat".lowerAscii() // returns 'tacocat'
"TacoCÆt Xii".lowerAscii() // returns 'tacocÆt xii'

.matches

matches determine if a string matches a given regular expression pattern. It returns a boolean value indicating whether the string conforms to the pattern.

// Checking if a string matches a simple pattern:
"apple".matches("^a.*e$") // true
// Validating an email format:
"example@email.com".matches("^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}$") // true
// Checking for a pattern of digits:
"12345".matches("^\\d+$") // true

.quote

Takes the given string and makes it safe to print (without any formatting due to escape sequences). If any invalid UTF-8 characters are encountered, they are replaced with \uFFFD.

strings.quote('single-quote with "double quote"') // returns '"single-quote with \"double quote\""'
strings.quote("two escape sequences a\n") // returns '"two escape sequences \\a\\n"'

.repeat

repeat on a string repeats the string for a given number of times.

"apple".repeat(3) // "appleappleapple"

.replace

Returns a new string based on the target, which replaces the occurrences of a search string with a replacement string if present. The function accepts an optional limit on the number of substring replacements to be made.

When the replacement limit is 0, the result is the original string. When the limit is a negative number, the function behaves the same as replace all.

<string>.replace(<string>, <string>) -> <string>
<string>.replace(<string>, <string>, <int>) -> <string>

Examples:

"hello hello".replace("he", "we") // returns 'wello wello'
"hello hello".replace("he", "we", -1) // returns 'wello wello'
"hello hello".replace("he", "we", 1) // returns 'wello hello'
"hello hello".replace("he", "we", 0) // returns 'hello hello'

.replaceAll

replaceAll replaces all occurrences of a substring within a string with another substring.

"I have an apple".replaceAll("apple", "orange") // "I have an orange"

.reverse

Returns a new string whose characters are the same as the target string, only formatted in reverse order. This function relies on converting strings to rune arrays in order to reverse.

"gums".reverse() // returns 'smug'
"John Smith".reverse() // returns 'htimS nhoJ'

.runeCount

runeCount counts the number of runes in a given string.

"Hello World".runeCount() // 11
"Hello$World".runeCount() // 11

.shellQuote

shellQuote quotes a string such that it can be safely used as a token in a shell command.

"Hello World".shellQuote() // "'Hello World'"
// Shell quoting a string with special characters:
"Hello$World".shellQuote() // "'Hello$World'"
// Shell quoting a string with spaces and special characters:
"Hello World$123".shellQuote() // "'Hello World$123'"

.size

size determine the number of elements in a collection or the number of Unicode characters in a string.

// Getting the size of a list:
["apple", "banana", "cherry"].size() // 3
// Determining the number of characters in a string:
"hello".size() // 5

.slug

slug converts a given string into a URL-friendly slug format.

Syntax:

'string'.slug()

Where:

  • string is the input string to be converted.

Examples:

// Converting a string to a slug:
"Hello World!".slug() // "hello-world"
// Converting a string with special characters:
"Hello, World!".slug() // "hello-world"
// Converting a multi-word string:
"Hello Beautiful World".slug() // "hello-beautiful-world"

.snakeCase

snakeCase converts a given string into snake_case format.

// Converting a string to snake_case:
"Hello World".snakeCase() // "hello_world"
// Converting a CamelCase string:
"HelloWorld".snakeCase() // "hello_world"
// Converting a string with spaces and special characters:
"Hello Beautiful World!".snakeCase() // "hello_beautiful_world"

.sort

sort on a string sorts the string alphabetically.

"hello".sort() // ehllo

.split

Returns a list of strings split from the input by the given separator. The function accepts an optional argument specifying a limit on the number of substrings produced by the split.

When the split limit is 0, the result is an empty list. When the limit is 1, the result is the target string to split. When the limit is a negative number, the function behaves the same as split all.

Examples:

"hello hello hello".split(" ") // returns ['hello', 'hello', 'hello']
"hello hello hello".split(" ", 0) // returns []
"hello hello hello".split(" ", 1) // returns ['hello hello hello']
"hello hello hello".split(" ", 2) // returns ['hello', 'hello hello']
"hello hello hello".split(" ", -1) // returns ['hello', 'hello', 'hello']

.squote

squote adds single quotes around a given string.

// Single quoting a simple string:
"Hello World".squote() // "'Hello World'"
// Single quoting a string with a number:
"12345".squote() // "'12345'"
// Single quoting an already single quoted string:
"'Hello World'".squote() // "'''Hello World'''"

.startsWith

startsWith determine if a string starts with a specified substring.

// Checking if a string starts with a certain substring:
"hello".startsWith("he") // true

.substring

Returns the substring given a numeric range corresponding to character positions. Optionally may omit the trailing range for a substring from a given character position until the end of a string.

Character offsets are 0-based with an inclusive start range and exclusive end range. It is an error to specify an end range that is lower than the start range, or for either the start or end index to be negative or exceed the string length.

"tacocat".substring(4) // returns 'cat'
"tacocat".substring(0, 4) // returns 'taco'
"tacocat".substring(-1) // error
"tacocat".substring(2, 1) // error

.title

title converts the first character of each word in a string to uppercase.

// Converting a string:
"hello world".title() // "Hello World"
// Working with mixed case:
"mIxEd CaSe".title() // "MIxED CASe"

.trim

Returns a new string which removes the leading and trailing whitespace in the target string. The trim function uses the Unicode definition of whitespace which does not include the zero-width spaces.

"  \ttrim\n    ".trim() //  'trim'

.trimPrefix

trimPrefix removes a given prefix from a string if the string starts with that prefix.

// Removing a prefix from a string:
"Mr. Smith".trimPrefix("Mr.") // "Smith"
// Another example:
"Astronaut".trimPrefix("Astro") // "naut"
// If the prefix is not present:
"Mr. Smith".trimPrefix("Dr.") // "Mr. Smith"

.trimSuffix

trimSuffix removes a given suffix from a string if the string ends with that suffix.

// Removing a suffix from a string:
"image.jpg".trimSuffix(".jpg") // "image"
// If the suffix is not present:
"image.jpg".trimSuffix(".png") // "image.jpg"

.upperAscii

Returns a new string where all ASCII characters are upper-cased.

This function does not perform Unicode case-mapping for characters outside the ASCII range.

"TacoCat".upperAscii() // returns 'TACOCAT'
"TacoCÆt Xii".upperAscii() // returns 'TACOCÆT XII'

.wordWrap

wordWrap on a string inserts line-breaks into the string, before it reaches the given max width

Syntax:

'string'.wordWrap(maxWidth)
'string'.wordWrap(maxWidth, lineBreakSequence)

Where:

  • maxWidth is the desired maximum line length in characters
  • lineBreakSequence is the Line-break sequence to insert (defaults to "\n")

Examples:

"testing this line from here".wordWrap(10) // testing\nthis line\nfrom here
"Hello Beautiful World".wordWrap(16, "===") // Hello Beautiful===World

HumanDuration

HumanDuration converts a duration into a human-readable format.

// Converting a duration into a human-readable format:
HumanDuration(3600) // "1 hour"
// Converting another duration:
HumanDuration(600) // "10 minutes"
// Converting a longer duration:
HumanDuration(86400) // "1 day"

HumanSize

HumanSize converts a size in bytes into a human-readable format.

// Converting a size into a human-readable format:
HumanSize(1024) // "1 KiB"
// Converting another size:
HumanSize(1048576) // "1 MiB"
// Converting a larger size:
HumanSize(1073741824) // "1 GiB"

Semver

Semver parses a version string and returns a map containing the major, minor, patch, prerelease, metadata, and original version.

// Parsing a semantic version:
Semver("1.2.3-alpha+meta") // a map with major: "1", minor: "2", patch: "3", prerelease: "alpha", metadata: "meta", original: "1.2.3-alpha+meta"
Semver("2.3.4-beta+meta2") // a map with major: "2", minor: "3", patch: "4", prerelease: "beta", metadata: "meta2", original: "2.3.4-beta+meta2"
// Parsing a simple semantic version:
Semver("3.4.5") // a map with major: "3", minor: "4", patch: "5", prerelease: "", metadata: "", original: "3.4.5"

SemverCompare

SemverCompare compares two semantic version strings.

// Comparing two semantic versions:
SemverCompare("1.2.3", "1.2.4") // false
// Comparing two identical versions:
SemverCompare("2.3.4", "2.3.4") // true
// Comparing with a prerelease version:
SemverCompare("3.4.5", "3.4.5-alpha") // false

YAML

YAML

YAML converts a YAML formatted string into a map. It provides an easy way to handle YAML data.

// Converting a simple YAML string to a map:
YAML("name: Alice\nage: 30") // a map with keys "name" and "age"
// Handling a YAML sequence:
YAML("numbers:\n- 1\n- 2\n- 3") // a map with a key "numbers" containing an array
// Nested YAML data conversion:
YAML("person:\n name: Bob\n age: 35") // a nested map

toYAML

toYAML converts an object into a YAML formatted string.

toYAML({ name: "John" })
toYAML(["John", "Alice"])

YAMLArray

YAMLArray converts a YAML formatted string representing a sequence into an array.

// Converting a YAML sequence to an array:
YAMLArray("- 1\n- 2\n- 3") // an array [1, 2, 3]
// Handling complex objects in a YAML sequence:
YAMLArray("- name: Alice\n- name: Bob") // an array of maps
// An empty YAML sequence:
YAMLArray("") // an empty array

TOML

TOML

TOML converts a TOML formatted string into a map, making it easy to work with TOML data.

// Converting a TOML string to a map:
TOML('name = "Alice"\nage = 30') // a map with keys "name" and "age"
// Handling an array in TOML:
TOML("numbers = [1, 2, 3]") // a map with a key "numbers" containing an array
// Nested TOML data conversion:
TOML('[person]\nname = "Bob"\nage = 35') // a nested map

toTOML

toTOML converts a map or an array into a TOML formatted string.

Syntax:

toTOML(data)

Where:

  • data is the map or array to be converted.

Examples:

// Converting a map to a TOML string:
toTOML({ name: "Alice", age: 30 }) // "name = \"Alice\"\nage = 30"
// Handling an array (TOML arrays must be of the same type):
toTOML({ people: ["Alice", "Bob"] }) // "people = [\"Alice\", \"Bob\"]"
// An empty map:
toTOML({}) // an empty string

uuid

uuid.Nil

uuid.Nil returns the nil UUID.

uuid.V1() != uuid.Nil()

uuid.V1

uuid.V1 returns a version 1 UUID.

uuid.V1() != uuid.Nil()

uuid.V4

uuid.V4 returns a version 4 UUID.

uuid.V4() != uuid.Nil()

uuid.IsValid

uuid.IsValid checks if a string is a valid UUID.

uuid.IsValid("2a42e576-c308-4db9-8525-0513af307586")

uuid.Parse

uuid.Parse parses a string into a UUID.

uuid.Parse("2a42e576-c308-4db9-8525-0513af307586")